Resuscitation Using Whole Blood: From Trauma to OB

13 May 2019
Donald Jenkins MD FACS

Professor/Clinical, Division of Trauma and Emergency Surgery Vice Chair for Quality, Department of Surgery
Betty and Bob Kelso Distinguished Chair in Burn and Trauma Surgery
Associate Deputy Director, Military Health Institute UT Health San Antonio
Disclosures

- None
Acknowledgements

• Elizabeth Scherer, MD, Leslie Greebon, MD, Elly Xenakis MD, Max Braverman, MD, Kayla Ireland, MD Rachelle Jonas, Susannah Nicholson, MD, Ashley McGinity, MD, Doug Pokorny, MD and Mark DeRosa UT Health San Antonio

• Elizabeth Waltman, South Texas Blood and Tissue Center

• Alan Murdock, MD and Tammy Murdock, MD Pittsburgh PA

• COL John Holcomb, ISR (Retired, Houston TX)
Blood transfusion as a predictor of injury mortality

- 1 in 400 injured people die
- 1 in 50 of the hospitalized injured die
- 20% of transfused injured die
- 40% of injured who receive more than 10 U RBC die
Hemorrhage and Shock

- Sometimes it can be easy to spot
- The longer in shock, the more likely to die
- It takes a human being very little time to bleed to death
 - ~22 minutes from penetrating injury
 - This could be internal and/or external
 - ~28 minutes from blunt injury
 - Most often this is ‘hidden bleeding’ internally
- Define Massive Transfusion
 - ≥10u PRBC 24 hrs vs 5u/60 minutes = same mortality
For patients experiencing life threatening bleeding, massive transfusion (MT) is required:

- packed red blood cells (pRBC)
- plasma (P)
- platelets (PLT)
- cryoprecipitate (Cryo)
Whole blood for hemostatic resuscitation of major bleeding

Philip C. Spinella,1,2 Heather F. Pidcocke,2 Geir Strandenes,3,4 Tor Hervig,4 Andrew Fisher,5 Donald Jenkins,6 Mark Yazer,7 James Stubbs,8 Alan Murdock,9 Anne Sailliol,10 Paul M. Ness,11 and Andrew P. Cap2

- Logistical, economic and clinical benefits of cold stored low titer type O whole blood
- Cold stored for up to 21 days
 - Platelets OK
- Improved function compared to 1:1:1
LOW TITER GROUP O WHOLE BLOOD IN EMERGENCY SITUATIONS

Geir Strandenes,*† Olle Berséus,† Andrew P. Cap,§ Tor Hervig,*‖ Michael Reade,‖† Nicolas Prat,§§ Anne Sailliol,‖‖ Richard Gonzales,‖‖ Clayton D. Simon,§§ Paul Ness,‖‖‖ Heidi A. Doughty,‖‖‖ Philip C. Spinella,§*** and Einar K. Kristoffersen*‖

*Department of Immunology and Transfusion Medicine, Haukeland University Hospital; and † Norwegian Naval Special Operation Commando, Bergen, Norway; ‡ Department of Transfusion Medicine, Örebro University Hospital, Örebro, Sweden; § US Army Institute of Surgical Research, FT Sam Houston, Texas; ‖ Institute of Clinical Science, The University of Bergen, Norway; ‖‖ Australian Defense Force Joint Health Command, Canberra, Australian Capital Territory; ‖‖‖ French Military Medical Service, Clamart, France; ‖‖ Commander French Military Blood Transfusion Center, Clamart, France; ‖‖‖ Director, US Army Blood Program and ‖‖‖ US Army Transfusion Medicine Consultant to the Surgeon General San Antonio Military Medical Center, JBSA–Fort Sam Houston, Texas; ‖‖‖ Transfusion Medicine Division, Johns Hopkins Medical Institutions, Baltimore, Maryland; ‖‖‖ NHS Blood and Transplant, Birmingham, England, United Kingdom; and ‖‖‖ Division of Pediatric Critical Care, Department of Pediatrics, Washington University in St Louis, St Louis, Missouri

Conclusion: Low titer Group O is preferred alternative for emergency transfusions where safe ABO identical transfusions cannot be ensured
American Association of Blood Bankers October 2017

• Board approves petition to allow low titer group O whole blood as standard product without need for waiver

• Low titer defined locally

• No limit on amount of whole blood when used

• Transformational paradigm shift
Experience and Extrapolation

• 1 January 2015 to 31 August 2017 (32 months) UHS evaluated 16,947 trauma patients.
• 715 of these patients (4.2%) received 1244 units of emergency release blood products (this is before whole blood was available)
 • Red cells = 584
 • Plasma = 364
 • Platelets = 257
 • Other = 39
Experience and Extrapolation

- 289 of those patients died (40%) with an average Injury Severity Score (ISS which has a range of 0-75) of 22
- 124 (17% of emergency release blood product patients and 0.2% of the total) adults required a massive transfusion
 - The mortality in this group was 76%
 - DOA’s were excluded (no Lazarus effect)
Hypothesis

- Lack of adequate blood resuscitation in remote regions of STRAC
- Very high mortality in current MTP environment
- No agreed upon transfusion triggers
- No standard hemostatic resuscitation
- No early hemostatic resuscitation
Answers

• Cold stored whole blood

• Prehospital transfusion protocols need to be written and implemented
Component Therapy vs. Whole Blood

Component Therapy Gives You
1U PRBC + 1U PLT + 1U FFP + 10 pk Cryo =
- 660 mL
- Hct 29%
- Coag activity 65%
- 750 mg fibrinogen

Whole Blood
- Hct: 38-50%
- Plt: 150-400K
- Coags: 100%
- 1500mg Fibrinogen
RBC’s vs Whole Blood
Advantages of Whole Blood

- Natural
- Organic
- Non-GMO
- Free range
- Gluten Free
- High in protein
- Low in carbs
Rh Isoimmunization

- Of the 124 patients receiving MTP
 - 26 were women (21%)
 - 18 were age 18-50 (14%)
 - 10 of those 18 died (55%)
 - 16 of the 18 had a type and screen/cross (89%)
 - 1 was Rh negative (6.3%) (she lived)
- Published rate of isoimmunization in Rh- woman 3-6%
Rh- Data

- Risk of isoimmunization of 0.012 and 0.12 patients/year
- Would take 3000 months (250 years) to have 100 Rh- women of childbearing age receive LTO+WB, and somewhere between 3 and 30 of them would develop isoimmunization without the administration of RhIg
- Without transfusion of LTO+WB in the pre-hospital setting over this time period, nearly 500 women of childbearing age would die of hemorrhage
BROTHERS IN ARMS

TRANSFORMING TRAUMA CARE
Prehospital Cold Stored O+ Whole Blood in San Antonio

- Kicked off January 29 2018
- 18 helicopters
- 2 units each
- Mayo criteria for transfusion
- Women of child bearing age not excluded
- Rh isoimmunization risk versus bleeding to death
Whole Blood Transfusion Criteria

<table>
<thead>
<tr>
<th>Transfusion Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penetrating Trauma (requires 1 physiologic parameter)</td>
</tr>
<tr>
<td>Blunt Trauma (requires 1 physiologic parameter)</td>
</tr>
</tbody>
</table>

Physiologic Parameters

- Patient age ≥ 5
- Single reading of systolic blood pressure (SBP) < 90 mm Hg
- Single reading of heart rate (HR) > 120
- Shock index > 1
- Pulse Pressure < 45
- Positive focused assessment with sonography in trauma (FAST)
- Point of care lactate greater than 5.0 mg/dl
- Known or presumed anticoagulant use; or dual anti-platelet therapy
- Signs of hemorrhage: (high index of suspicion of active internal bleeding or visual evidence of external bleeding)
Hot off the Presses:
1 u LTO+WB saves 2 lives

- 1st week of January
 - SAEMS responds to woman down in bathtub
 - 38 weeks pregnant (G3P2)
 - Hemorrhaging
 - SBP = 60
 - SAEMS MOF transfuses 1u LTO+WB
 - On hospital arrival SBP = 85, 2 more units PRBC
 - Stat C-section for placenta previa, A+ blood type
- The next day
 - Mom and baby doing well
Contemporary work by Pokorny
First Year in Whole Blood Era

• **Component therapy emergency transfusion**
 • Death rate in trauma room = 24%
 • Time to death = 1 ½ hours

• **Whole blood as emergency transfusion**
 • Death rate in trauma room = 11%
 • Time to death = 5 ½ hours
Obstetric Hemorrhage and Massive Transfusion
Postpartum Hemorrhage

• Definition >500 mL vaginal delivery or >1000 mL cesarean section
 • ACOG reVITALize ≥ 1000 mL in 24 hrs or hypovolemia
• PPH has been widely recognized as a major cause of maternal mortality worldwide
 • Early mortality (within 24 hours)
 • 1 woman dies of PPH every 4 minutes worldwide and PPH is increasingly frequent
 • PPH rate over past 20 years from 1.5 to 4%
WOMAN Trial
World Maternal Antifibrinolytic

- 200 hospitals, 21 countries > 20,000 women
- TXA for PPH
- 10,000 women got TXA, 10,000 placebo
 - No difference in hysterectomy
 - Significant decrease in hemorrhage deaths with TXA, especially if within 3 hours of delivery
WHO Recommendations

- Uterotonic in 3rd stage of labor
- Tranexamic acid for refractory bleeding
- Aortic occlusion
- Angioembolization
- Surgical intervention
- Isotonic crystalloids, not colloids
- NOTHING about transfusion
• Finding #2 — The leading causes of pregnancy-related death in 2012 included cardiovascular and coronary conditions, obstetric hemorrhage, infection/sepsis, and cardiomyopathy.
 • 76 percent of all pregnancy-related deaths.

• Finding #5 — Most pregnancy-related deaths were potentially preventable.
 • Case review found that the majority of pregnancy-related deaths caused by cardiovascular disease, obstetric hemorrhage, and infection/sepsis were preventable.

• Finding #8 — Hemorrhage and Cardiac Event were the two most common causes of death while pregnant or within 7 days postpartum.
 • Of the 80 deaths that occurred while a woman was pregnant or within 7 days postpartum, hemorrhage & cardiac event accounted for 36% of these deaths.
• Finding #14 — Obstetric hemorrhage was the leading cause of severe maternal morbidity.

• Finding #15 — Black women are at a higher risk of severe maternal morbidity involving obstetric hemorrhage.

• Finding #16 — Rates of SMM due to obstetric hemorrhage disorders varied by county.

 • DSHS estimated the rate of SMM due to obstetric hemorrhage. Based on CDC recommendations, this rate was determined by the number of times blood was given to a woman in labor per 10,000 delivery hospitalizations.
Recommendations

- **Recommendation #4** — Promote a **culture of safety and high reliability** through implementation of best practices in birthing facilities.
 - The Task Force found a number of **provider and facility factors** associated with maternal death including failure to recognize risk status, delays in diagnosis, and delays in implementation of appropriate treatment.
 - DSHS and its partners have begun implementation of the maternal safety initiatives of **TexasAIM**, which address both hemorrhage and severe hypertension. The TexasAIM initiative also includes education and implementation of the **Maternal Early Warning Systems (MEWS)** which prompts early diagnosis and intervention.

- **Recommendation #5** — Identify or develop and implement **programs to reduce maternal mortality** from cardiovascular and coronary conditions, cardiomyopathy and infection/sepsis.
 - The Task Force recommends identification and implementation of **best-practice programs** to reduce risks of maternal death from these conditions.

University Hospital Experience

- 2 years, over 7000 deliveries
- 600+ women transfused in first 24 hours following delivery
 - Over 10% required MTP
- MTP patients
 - Greater length of stay/ICU
 - Greater rate of fetal death
 - Greater rate of hysterectomy
<table>
<thead>
<tr>
<th>Condition</th>
<th>MTP</th>
<th>Non-MTP</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reported PPH</td>
<td>53 (72.6%)</td>
<td>163 (30.35%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Placenta Previa</td>
<td>12 (16.44%)</td>
<td>20 (3.73%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Placenta Acreta</td>
<td>8 (10.96%)</td>
<td>9 (1.68%)</td>
<td><0.01</td>
</tr>
<tr>
<td>Placenta Increta</td>
<td>2 (2.74%)</td>
<td>1 (0.19%)</td>
<td>0.003</td>
</tr>
<tr>
<td>Placenta Percreta</td>
<td>9 (12.33%)</td>
<td>2 (0.37%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Placental Abruption</td>
<td>8 (10.96%)</td>
<td>36 (6.73%)</td>
<td>0.191</td>
</tr>
</tbody>
</table>

Distribution of patient characteristics between MTP and Non-MTP groups.
Distribution of blood types between MTP and Non-MTP groups

<table>
<thead>
<tr>
<th>Blood type</th>
<th>MTP</th>
<th>Non-MTP</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>25 (34.25%)</td>
<td>140 (26.07%)</td>
<td>165 (27.05%)</td>
</tr>
<tr>
<td>A-</td>
<td>0 (0%)</td>
<td>6 (1.12%)</td>
<td>6 (0.98%)</td>
</tr>
<tr>
<td>AB+</td>
<td>2 (2.74%)</td>
<td>15 (2.79%)</td>
<td>17 (2.79%)</td>
</tr>
<tr>
<td>B+</td>
<td>8 (10.96%)</td>
<td>51 (9.5%)</td>
<td>59 (9.67%)</td>
</tr>
<tr>
<td>B-</td>
<td>0 (0%)</td>
<td>7 (1.3%)</td>
<td>7 (1.15%)</td>
</tr>
<tr>
<td>O+</td>
<td>36 (49.32%)</td>
<td>296 (55.12%)</td>
<td>332 (54.43%)</td>
</tr>
<tr>
<td>O-</td>
<td>2 (2.74%)</td>
<td>22 (4.1%)</td>
<td>24 (3.93%)</td>
</tr>
</tbody>
</table>
Multivariate Analysis

- Age > 35
- Percreta/Acreta/Increta
- Previa
- Uterine atony

Statistically significant predictor of need for PPH MTP

NOT statistically significant predictor of need for PPH MTP
Hypothesis

• Lack of adequate blood resuscitation in OB PPH resuscitation
• Many MTP’s, no agreed upon ratios
• No agreed upon transfusion triggers
• No standard hemostatic resuscitation
• No early hemostatic resuscitation
• No use of aortic occlusion
• No use of TXA
Answers

• Develop and implement transfusion protocols
 • Cold stored whole blood as initial emergency transfusion
 • TXA if transfusion initiated
 • Access femoral artery in high risk cases
 • Easy/rapid deployment of aortic occluding balloon
LTO+WB

- 93% of our patients are Rh+
- Plan to use same LTO+WB as is used for trauma patient
- If high risk patient admitted ahead of scheduled delivery
 - Direct crossmatch and set units aside
 - If Rh-, draw 4 units O-WB, crossmatch and set units aside
Follow Up

- Close performance improvement
 - Study each patient proactively
 - Safety review at 30 days and at 25 patients
 - Modify program as needed based upon incidents or trends
 - Is 4 units of whole blood enough? Too much?
 - Waste of blood?
 - Antibody development?
 - ICU and overall length of stay
 - Complications
Benefits

- Decrease recipient exposure to multiple donors
- Most physiologic and hemostatic agent
- May (should) decrease rate of need for MTP
- Shorter ICU and overall LOS
Clinical References/Resources

www.strac.org/blood

Pre-Hospital Blood Product Transfusion Record

<table>
<thead>
<tr>
<th>Product Unit Number</th>
<th>Product Type (Circle One)</th>
<th>Transfusion Date & Start Time</th>
<th>Transfusion Complete* (Circle One)</th>
<th>Transfusion Reaction** (Circle One)</th>
<th>MedRec/Initilas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>PRBC / Plasma / LTOWS</td>
<td>Yes / Ongoing</td>
<td>Yes / No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>PRBC / Plasma / LTOWS</td>
<td>Yes / Ongoing</td>
<td>Yes / No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>PRBC / Plasma / LTOWS</td>
<td>Yes / Ongoing</td>
<td>Yes / No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>PRBC / Plasma / LTOWS</td>
<td>Yes / Ongoing</td>
<td>Yes / No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** Blood product transfusion is ongoing at time of patient transfer to hospital; document "Ongoing"**

Document actions taken in "Comments" section

Actions to Take for Suspected Transfusion Reaction
- STOP TRANSFUSION
- Disconnect tubing from infusion site; flush line with normal saline
- Keep IV line open with normal saline
- Re-institute new transfusion if it is deemed clinically essential
- Document actions taken in comments section

Patient Identification:

Run/MRN #:

Visit strac.org/blood for FAQs & More Information

This card can be given to receiving facilities
References

- https://apps.who.int/iris/bitstream/handle/10665/75411/9789241548502_eng.pdf;jsessionid=056E99DEE2B321D808D5E4CC456B0F7B?sequence=1
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680565/
References

- Lin, Lin MD; Chen, Yan-Hong MD; Sun, Wen MD; Gong, Jing-Jin MM; Li, Pu MM; Chen, Juan-Juan MD; Yan, Hao MD; Ren, Lu-Wen MM; Chen, Dun-Jin MDRisk factors of obstetric admissions to the intensive care unit: An 8-year retrospective study. Medicine. 98(11):e14835, March 2019.
Thank You!

Questions?
Contact

Donald H. Jenkins, MD, FACS
Professor/Clinical, Division of Trauma and Emergency Surgery, Vice Chair for Quality, Department of Surgery, Betty and Bob Kelso Distinguished Chair in Burn and Trauma Surgery, Associate Deputy Director, Military Health Institute

UT Health San Antonio
7703 Floyd Curl Drive
San Antonio, TX 78229-3900
Phone: (210) 743-4130

Jenkinsd4@uthscsa.edu